
(Temporal) Logic Tutorial

Edsko de Vries

October 22, 2006

1 Propositional Logic

1.1 Syntax

The syntax of a formulaφ in propositional logic is given by

φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ | φ → φ

denoting an arbitrary variablep, negation, conjunction,
disjunction, and implication respectively. An example is

(p ∧ ¬q) → r (α)

1.2 Semantic Entailment

Is α true? Well, that depends on the values ofp, q andr. If
we list all possiblevaluationsof p, q andr, we obtain the
truth table for φ:

p q r φ
- - - +
- - + +
- + - +
- + + +
+ - - -
+ - + +
+ + - +
+ + + +

Thus,α is true (+)unless p ∧ ¬q ∧ ¬r. Conversely, if we are
givenα, we can conclude that any valuation ofp, q andr is
possible,except p ∧ ¬q ∧ ¬r. Suppose we are givenα, p and
¬r. From the truth table, we can concludeq. To paraphrase,
from α, p and¬r, we can concludeq, based on thetruth of α,
p andr. This is calledsemantic entailmentand is denoted

α, p,¬r � q

1.3 Inference

The question arises whether we can alsoprove q from α, p
and¬r, reasoning onlysymbolically. It turns out that we
can. One proof is given by:

(1) (p ∧ ¬q) → r given
(2) p given
(3) ¬r given
(4) ¬q assumption
(5) p ∧ ¬q from (2) and (4)
(6) r from (1) and (5)
(7) ¬r ∧ r from (3) and (6)
(8) contradiction law of the excluded middle
(9) q conclusion (proof by contradiction)

This is calledinferenceand is denoted by

α, p,¬r ⊢ q

Inference works by applying proof rules. For example, the
two proof rules that were used in lines (7) and (8) of the
proof above are

φ ψ

φ ∧ ψ

φ ¬φ

contradiction

I.e., if you knowφ, and you knowψ, you can inferφ ∧ ψ.
Similarly, if you knowφ and you know¬φ, you have a
contradiction on your hands.

1.4 Soundness and Completeness

A logic is completeif we can proof a formulaψ from a
formulaφ wheneverψ follows semantically fromφ, i.e.
φ ⊢ ψ wheneverφ � ψ. A logic is sound if a formulaψ
follows semantically from a a formulaφ whenever we can
proofψ from φ, i.e. φ � ψ wheneverφ ⊢ ψ.

In plain English, completeness means that we can prove
everything that we should be able to prove, and soundness
means that we cannot prove anything that we should not be
able to prove. Propositional logic is both sound and
complete.

1.5 Some Definitions

A rule φ1, φ2, · · · , φn ⊢ ψ is called asequent.
φ1, φ2, · · · , φn are thepremisesof the sequent, andψ is the
conclusionof the sequent. If a formulaψ can be proven
independent of any premises, i.e. if⊢ ψ, thenψ is called a
theorem. For example,p ∨ ¬p is a theorem (this particular
theorem is called thelaw of the excluded middle).

If a formulaψ is true independent of the valuation of the
variables in the formula (i.e., its truth table lists “true”in

1

every row), the formula is called atautology (denoted� ψ).
If a formula is a tautology, the formula is said to bevalid.
When a logic is both sound and complete, the theorems are
the tautologies.

Similar to the notion of validity, a formula issatisfiableif
it is true forat least one valuation of its variables (i.e., its
truth table lists “true” in at least one row). These two notions
are closely linked: if a formulaφ is valid, then¬φ is not
satisfiable: ifφ is valid, it must always be true; hence¬φ is
never true and thus not satisfiable. Conversely, if a formulaφ
is satisfiable, then¬φ is not valid.

Finally, two formulaeφ andψ areprovably equivalent,
denotedφ ⊣⊢ ψ, iff φ ⊢ ψ andψ ⊢ φ. Two formulaeφ and
ψ are (semantically)equivalent, denotedφ ≡ ψ, iff φ � ψ
andψ � φ.

2 Predicate (First-Order) Logic

2.1 Syntax

A formulaφ in predicate logic is built up ofpredicates. A
predicateP consists of a number ofterms. A term is either a
variablex, a constantc, or a functionf(t1,t2,· · ·,tn) of
a number of terms. The syntax for formulae then closely
resembles the syntax for formulae in propositional logic,
except that we introduce twoquantifiers: theuniversal
quantifier (“for all x”, ∀x) and theexistential quantifier
(“there exists anx such that”,∃x). The syntax of predicate
logic is given by

t ::= x | c | f(t, · · ·,t)
φ ::= P(t1,t2, · · ·,tn)
φ ::= ¬φ | φ ∧ φ | φ ∨ φ | φ → φ
φ ::= ∀x ·φ | ∃x ·φ

An example is
∀x ∃y · D(x, y) (β)

2.2 Models

Like before, we would like to ask the question, isβ true? For
the propositional case we answered this question by giving a
truth table. Unfortunately, it is not so easy to give a truth
table forβ. The problem is thatx andy could potentially
range over an infinite set. Moreover, what exactly do we
mean byD(x, y)?

Suppose thatx andy range over the natural numbers, i.e.
x, y ∈ N, and suppose thatD(x, y) meansy|x (y dividesx).
Clearly, in thatinterpretation , β is true. But if in another
interpretationx andy range over the “set of humans”, and
D(x, y) means “y is a daughter ofx”, β is false because not
everybody has a daughter.

Formally, an interpretation is amodelM. For each
variablex, the model must specify a setX wherex ranges
overX. For every functionf (x1, x2, · · · , xn), the model
must specify a concrete function
f ′ ∈ X1X2 · · · Xn → Xn+1, and finally, for every predicate

P(x1, x2, · · · , xn), the model must specify a concrete
relationP′ ∈ X1 × X2 × · · · × Xn.

If a functionφ is true in a modelM, we writeM � φ. To
check whetherM � φ is known asmodel checking1.

2.3 Semantic Entailment

If in some modelI(x) means “x is Irish”, andE(x) means
“ x speaks English”, the following sequent holds.

∀x · I(x) �M ∀x · E(x)

(Note the use of�M to indicate semantic entailment with
respect the modelM.) Now consider the sequent

∀x · P(x) → Q(x), ∀x · P(x) � ∀x · Q(x)

This sequent is trueno matter what model we assume,
written φ � ψ (semantic entailment).

2.4 Definitions

A formulaφ is satisfiableiff there is some modelM such
thatM � φ. The set of premisesΓ of a sequent isconsistent
(or sometimessatisfiable) iff there is a modelM such that
M � φ for all φ ∈ Γ. A formulaφ is valid iff M � φ for all
appropriate modelsM.

Note that we have overloaded the� operator:M � φ
denotes model checking, whereasφ � ψ denotes semantic
entailment.

Model checking is decidable only for finite models;
semantic entailment (checking whetherφ � ψ holds for any
model) is even harder andundecidable.

There is also an inference procedure for predicate logic,
such thatφ ⊢ ψ if and only if φ � ψ, i.e., predicate logic is
both sound and complete.

2.5 Higher Order Logics

Suppose in a modelM the variables range over the nodes of
a graph, and we have a single predicateE(x, y) indicating an
edge fromx to y. Suppose we want to define a formulaρ that
evaluates to true if where is a path from a noden1 to another
noden2 (i.e., if n2 is reachable fromn1). We could try to
defineρ as

E(n1, n2) ∨ ∃n3 · E(n1, n3), E(n3, n2) ∨ · · · (ρ)

Obviously,ρ would be infinitely long—no use. It turns out
this formula cannot actually be written in predicate logic (for
a proof refer to [1]). We have to use ahigher order logic. In
second-order logic, the existential and universal quantifiers
can range over predicate symbols as well as over variables.
We will not discuss higher order logics any further.

1We are ignoring free variables here for ease of discussion

2

p, q

q, r

p, q

q, r

p, q

...

r

...

r

r

...

r

r

r

...

r

r

r

r

...

Figure 1: Computation tree

3 Temporal Logic

3.1 Transition Systems

Where in predicate logic the choice of model was left
completely open, in temporal logics only a single type of
model is considered, which is a transition system (essentially
a finite-state machine). In a temporal logic, an atom is no
longer always true or always false. Rather, is true for certain
states of the transition system. A transition system can be
described graphically, for example:

p,q

q,r r

s0

s1 s2

Formally, a transition systemM is a triple(S,→, L), with S
is a set of states,→ a binary relation onS such that for all
s ∈ S there exists ans′, s → s′, and finally a function
L : S → ℘(Atoms) that maps states to sets of atoms (for
each state it lists the atoms that are true in that state). In the
example,S = {s0, s1, s2},
→ = {(s0, s1), (s0, s2), (s1, s0), (s1, s2), (s2, s2)} andL
mapss0 to {p, q}, s1 to {q, r} ands2 to {r}.

Given such transition system, we can derive a computation
tree starting from a particular state. For the example above,
starting from states0, we obtain the (infinite) tree shown in
figure 1.

3.2 Linear-Time Temporal Logic (LTL)

From the tree in figure 1, we can follow the individual
computation paths (amongst others):

(p, q), r, r, r, · · ·

(p, q), (q, r), r, r, r, · · ·

(p, q), (q, r), (p, q), r, r, r, · · ·

(p, q), (q, r), (p, q), (q, r), (p, q), · · ·

Formulae in LTL range over these paths. The syntax for LTL
is given by

φ ::= ⊤ | ⊥
φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ | φ → φ
φ ::= X φ | F φ | G φ
φ ::= φ U φ | φ W φ | φ R φ

Let a pathπ = {s1, s2, s3, · · · }, and letπi be the path
starting from thei’th state, i.e.π2 = {s2, s3, · · · }. Then:

• π � p iff p ∈ L(s1). E.g.π � p if p is true in the first
state of the path
• π � ¬φ iff π 2 φ (similarly for∧, ∨ and→)
• π � X φ iff π2 � φ. E.g.,π � X p if p is true in the
second state of the path
• π � F φ iff πi

� φ for somei ≥ 1

• π � G φ iff πi � φ for all i ≥ 1

• π � φ U ψ iff πi � ψ for somei and for all1 ≤ j < i,
π j � φ, i.e. φ holds untilψ holds (note thatφ might
continue to hold even afterψ holds). W and R are
variants on U.

As before, we are interested in model satisfaction:
M, s0 � φ if φ holds for all paths in the model starting from
states0. For the example given above, we have

• M, s0 � p, q because{p, q} ⊆ L(s0)
• M, s0 � X r because in all paths starting froms0, r
holds in the second state of each path
• M, s0 � F (¬q ∧ r) → F G r. For each path, if the
path has a state where¬q ∧ r, then on that path, there is
a statei such thatπi

� G r, i.e., such thatr holds for all
states from statei onwards.

3.3 Computation Tree Logic (CTL)

There is many things that we cannot express in LTL. For
example, “from a state wherep holds, it is always possible to
get to a state whereq holds”. The LTL formula G(p → F q)
says that from a state wherep holds we willalways go to a
state whereq holds (remember that LTL formulae quantify
over all possible paths).

In CTL, we add quantifiers to the syntax to say whether
we want to specify that a formula holds over all paths
(universal quantifier) or over at least one path (existential
quantifier). The syntax of CTL is given by

φ ::= ⊤ | ⊥
φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ | φ → φ
φ ::= AX φ | EX φ
φ ::= AF φ | EF φ
φ ::= AG φ | EG φ
φ ::= A[φ U φ] | E[φ U φ]

Because the semantics of these connectives is fairly intuitive
(up to a point), we won’t specify them formally here. The
formula that we were looking for earlier, “from a state where
p holds, it is always possible to get to a state whereq holds”,
can now be expressed in CTL: AG(p → EF q). In words: for

3

all paths, ifp holds in some states, thenq will hold on at
least one path starting froms.

3.4 CTL*

As we have seen, there are things that we can express in CTL
that we cannot express in LTL. Unfortunately, the reverse
holds as well. For example, “all paths which have ap along
them also have aq along them”, is described by the LTL
formula Fp → F q. The CTL formula AF p→ AF q means
something different: it says, if all paths have ap along them,
then all paths have aq along them. The CTL formula
AG (p → EF q) does not describe quite the same thing
either, because it says (as we have seen in the last section)
that all paths that have ap along them, will eventually meet a
q; but it does not allow for thisq to occurbefore the p.

CTL* is a logic that is strictly more powerful than both
LTL and CTL (i.e., it incorporates both CTL and LTL). The
syntax of CTL* is given by

φ ::= ⊤ | ⊥
φ ::= ¬φ | φ ∧ φ | φ ∨ φ
φ ::= A[α] | E[α]

α ::= φ | ¬α | α ∧ α | α ∨ α
α ::= α U α | G α | F α | X α

The important difference between this syntax and the syntax
of CTL is that the quantifiers are no longer always matched
to a temporal connective. For example, “all paths which have
a p along them also have aq along them” is specified by
A[F p → F q].

Model checking for LTL and CTL* has an exponential
complexity, whereas model checking for CTL has a
complexity linear in the size of the formula and quadratic in
the size of the model (unfortunately, the size of the model
itself often grows exponentially with the complexity of the
system being modeled.)

4 Relevance to Compiler Design

Many properties used in program analysis in compiler design
can be described by temporal logic formulae. Lacey [2] uses
a version of computation tree logic (CTL), limited to theAX,
EX, AU andEU operators, but introducing a “backwards”
version of each of these operators (AX△, EX△, AU△ and
EU△), defined the way you would expect (for example,
M, s0 � EX

△φ if for someprevious states−i, we have
M, s−i � φ).

Lacey describes a compiler framework in which a
compiler is specified in terms of conditional rewrite rules;the
conditions can be specified using temporal logic. One
example, describing constant propagation, is given by

n : (x := v) =⇒ x := c

if n � A
△

(

¬def (v) U def (v) ∧ stmt(v := c)
)

andconlit(c)

This rule should be read as: a statementx := v can be
replaced by another statementx := c, if c is a constant literal
(conlit), and if on all paths to the node (i.e., backwards),v is
not defined until it is defined and given the valuec; i.e., if on
all paths to the node, the last assignment tov on every path is
an assignmentv := c (note that we use the control flow
graph of the program as a model).

As another example, (a simple approach to) dead code
elimination is described by

n : (x := e) =⇒ ǫ

if n � AX(¬E(⊤ U use(x)))

The strange constructionE(⊤ U φ) is used because of the
absence of theEF operator; the same rule would be
described more simply by

n : (x := e) =⇒ ǫ

if n � AX(¬EF(use(x)))

In words, an assignmentx := e can be eliminated ifx is not
used on any path from the assignment. Note that the
following simplification of the rule, although more intuitive,
is incorrect:

n : (x := e) =⇒ ǫ

if n � ¬EF(use(x))

This rule is incorrect because the “future” in standard
temporal logic includes the “present” (see the formal
semantics of the temporal connectives in LTL, section 3.2).
So, this last rule would fail to eliminate a rule such as
x := x + 1, even whenx is never used again, becausex is
used in the rule itself.

The important thing to realise is that these rules are really
definitions of when we can apply constant propagation or do
dead code elimination, but, equally important, they are also
executable: the compiler can be written in a declarative
manner.

References

[1] HUTH, M., AND RYAN , M. Logic in Computer Science.
Cambridge University Press, 2004.

[2] L ACEY, D., AND DE MOOR, O. Imperative program
transformation by rewriting. InCC ’01: Proceedings of
the 10th International Conference on Compiler
Construction (2001), Springer-Verlag, pp. 52–68.

4

